1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
//! Graph algorithms.
//!
//! It is a goal to gradually migrate the algorithms to be based on graph traits
//! so that they are generally applicable. For now, some of these still require
//! the `Graph` type.

use std::collections::BinaryHeap;
use std::cmp::min;

use prelude::*;

use super::{
    EdgeType,
};
use scored::MinScored;
use super::visit::{
    GraphRef,
    Visitable,
    VisitMap,
    IntoNeighbors,
    IntoNeighborsDirected,
    IntoNodeIdentifiers,
    IntoExternals,
    NodeIndexable,
    NodeCompactIndexable,
    IntoEdgeReferences,
    EdgeRef,
    Reversed,
};
use super::unionfind::UnionFind;
use super::graph::{
    IndexType,
};

pub use super::isomorphism::{
    is_isomorphic,
    is_isomorphic_matching,
};
pub use super::dijkstra::dijkstra;

/// [Generic] Return the number of connected components of the graph.
///
/// For a directed graph, this is the *weakly* connected components.
pub fn connected_components<G>(g: G) -> usize
    where G: NodeCompactIndexable + IntoEdgeReferences,
{
    let mut vertex_sets = UnionFind::new(g.node_bound());
    for edge in g.edge_references() {
        let (a, b) = (edge.source(), edge.target());

        // union the two vertices of the edge
        vertex_sets.union(G::to_index(a), G::to_index(b));
    }
    let mut labels = vertex_sets.into_labeling();
    labels.sort();
    labels.dedup();
    labels.len()
}


/// [Generic] Return `true` if the input graph contains a cycle.
///
/// Always treats the input graph as if undirected.
pub fn is_cyclic_undirected<G>(g: G) -> bool
    where G: NodeIndexable + IntoEdgeReferences
{
    let mut edge_sets = UnionFind::new(g.node_bound());
    for edge in g.edge_references() {
        let (a, b) = (edge.source(), edge.target());

        // union the two vertices of the edge
        //  -- if they were already the same, then we have a cycle
        if !edge_sets.union(G::to_index(a), G::to_index(b)) {
            return true
        }
    }
    false
}

/// [Generic] Perform a topological sort of a directed graph `g`.
///
/// Visit each node in order (if it is part of a topological order).
///
/// If `space` is not `None`, it is reused instead of creating a temporary
/// workspace for graph traversal.
#[inline]
fn toposort_generic<G, F>(g: G,
                          space: Option<&mut DfsSpaceType<G>>,
                          mut visit: F)
    where G: IntoNeighborsDirected + IntoExternals + Visitable,
          F: FnMut(G, G::NodeId),
{
    with_dfs(g, space, |dfs| {
        dfs.reset(g);
        let mut ordered = &mut dfs.discovered;
        let mut tovisit = &mut dfs.stack;

        // find all initial nodes
        tovisit.extend(g.externals(Incoming));

        // Take an unvisited element and find which of its neighbors are next
        while let Some(nix) = tovisit.pop() {
            if ordered.is_visited(&nix) {
                continue;
            }
            visit(g, nix.clone());
            ordered.visit(nix.clone());
            for neigh in g.neighbors_directed(nix, Outgoing) {
                // Look at each neighbor, and those that only have incoming edges
                // from the already ordered list, they are the next to visit.
                if g.neighbors_directed(neigh.clone(), Incoming)
                    .all(|b| ordered.is_visited(&b)) {
                    tovisit.push(neigh);
                }
            }
        }
    })
}

/// [Generic] Return `true` if the input directed graph contains a cycle.
///
/// If `space` is not `None`, it is reused instead of creating a temporary
/// workspace for graph traversal.
pub fn is_cyclic_directed<G>(g: G, space: Option<&mut DfsSpaceType<G>>) -> bool
    where G: IntoNodeIdentifiers + IntoNeighborsDirected + IntoExternals + Visitable,
{
    let mut n_ordered = 0;
    toposort_generic(g, space, |_, _| n_ordered += 1);
    n_ordered != g.node_count()
}

type DfsSpaceType<G> where G: Visitable = DfsSpace<G::NodeId, G::Map>;

/// Workspace for a graph traversal.
#[derive(Clone, Debug)]
pub struct DfsSpace<N, VM> {
    dfs: Dfs<N, VM>,
}

impl<N, VM> DfsSpace<N, VM>
    where N: Copy,
          VM: VisitMap<N>,
{
    pub fn new<G>(g: G) -> Self
        where G: GraphRef + Visitable<NodeId=N, Map=VM>,
    {
        DfsSpace {
            dfs: Dfs::empty(g)
        }
    }
}

impl<N, VM> Default for DfsSpace<N, VM>
    where VM: VisitMap<N> + Default,
{
    fn default() -> Self {
        DfsSpace {
            dfs: Dfs {
                stack: <_>::default(),
                discovered: <_>::default(),
            }
        }
    }
}

/// [Generic] Perform a topological sort of a directed graph.
///
/// Return a vector of nodes in topological order: each node is ordered
/// before its successors.
///
/// NOTE: If the returned vec contains less than all the nodes of the graph,
/// then the graph had a cycle.
///
/// If `space` is not `None`, it is reused instead of creating a temporary
/// workspace for graph traversal.
pub fn toposort<G>(g: G, space: Option<&mut DfsSpaceType<G>>) -> Vec<G::NodeId>
    where G: IntoNodeIdentifiers + IntoNeighborsDirected + IntoExternals + Visitable,
{
    let mut order = Vec::with_capacity(g.node_count());
    toposort_generic(g, space, |_, ix| order.push(ix));
    order
}

/// Create a Dfs if it's needed
fn with_dfs<G, F, R>(g: G, space: Option<&mut DfsSpaceType<G>>, f: F) -> R
    where G: GraphRef + Visitable,
          F: FnOnce(&mut Dfs<G::NodeId, G::Map>) -> R
{
    let mut local_visitor;
    let dfs = if let Some(v) = space { &mut v.dfs } else {
        local_visitor = Dfs::empty(g);
        &mut local_visitor
    };
    f(dfs)
}

/// [Generic] Check if there exists a path starting at `from` and reaching `to`.
///
/// `from` and `to` are equal, this function returns true.
///
/// If `space` is not `None`, it is reused instead of creating a temporary
/// workspace for graph traversal.
pub fn has_path_connecting<G>(g: G, from: G::NodeId, to: G::NodeId,
                              space: Option<&mut DfsSpaceType<G>>)
    -> bool
    where G: IntoNeighbors + Visitable,
          G::NodeId: PartialEq,
{
    with_dfs(g, space, |dfs| {
        dfs.reset(g);
        dfs.move_to(from);
        while let Some(x) = dfs.next(g) {
            if x == to {
                return true;
            }
        }
        false
    })
}


/// [Generic] Compute the *strongly connected components* using Kosaraju's algorithm.
///
/// Return a vector where each element is a strongly connected component (scc).
///
/// The order of `NodeId` within each scc is arbitrary, but the order of
/// the sccs is their postorder (reverse topological sort).
///
/// This implementation is iterative and does two passes over the nodes.
///
/// For an undirected graph, the sccs are simply the connected components.
pub fn scc<G>(g: G) -> Vec<Vec<G::NodeId>>
    where G: IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
{
    let mut dfs = DfsPostOrder::empty(g);

    // First phase, reverse dfs pass, compute finishing times.
    // http://stackoverflow.com/a/26780899/161659
    let mut finish_order = Vec::with_capacity(g.node_count());
    for i in g.node_identifiers() {
        if dfs.discovered.is_visited(&i) {
            continue
        }

        dfs.move_to(i);
        while let Some(nx) = dfs.next(Reversed(g)) {
            finish_order.push(nx);
        }
    }

    let mut dfs = Dfs::from_parts(dfs.stack, dfs.discovered);
    dfs.reset(g);
    let mut sccs = Vec::new();

    // Second phase
    // Process in decreasing finishing time order
    for i in finish_order.into_iter().rev() {
        if dfs.discovered.is_visited(&i) {
            continue;
        }
        // Move to the leader node `i`.
        dfs.move_to(i);
        let mut scc = Vec::new();
        while let Some(nx) = dfs.next(g) {
            scc.push(nx);
        }
        sccs.push(scc);
    }
    sccs
}

/// [Generic] Compute the *strongly connected components* using Tarjan's algorithm.
///
/// Return a vector where each element is a strongly connected component (scc).
///
/// The order of `NodeId` within each scc is arbitrary, but the order of
/// the sccs is their postorder (reverse topological sort).
///
/// This implementation is recursive and does one pass over the nodes.
///
/// For an undirected graph, the sccs are simply the connected components.
pub fn tarjan_scc<G>(g: G) -> Vec<Vec<G::NodeId>>
    where G: IntoNodeIdentifiers + IntoNeighbors + NodeIndexable
{
    #[derive(Copy, Clone)]
    #[derive(Debug)]
    struct NodeData {
        index: Option<usize>,
        lowlink: usize,
        on_stack: bool,
    }

    #[derive(Debug)]
    struct Data<'a, G>
        where G: NodeIndexable, 
          G::NodeId: 'a
    {
        index: usize,
        nodes: Vec<NodeData>,
        stack: Vec<G::NodeId>,
        sccs: &'a mut Vec<Vec<G::NodeId>>,
    }

    fn scc_visit<G>(v: G::NodeId, g: G, data: &mut Data<G>) 
        where G: IntoNeighbors + NodeIndexable
    {
        macro_rules! node {
            ($node:expr) => (data.nodes[G::to_index($node)])
        }

        if node![v].index.is_some() {
            // already visited
            return;
        }

        let v_index = data.index;
        node![v].index = Some(v_index);
        node![v].lowlink = v_index;
        node![v].on_stack = true;
        data.stack.push(v);
        data.index += 1;

        for w in g.neighbors(v) {
            match node![w].index {
                None => {
                    scc_visit(w, g, data);
                    node![v].lowlink = min(node![v].lowlink, node![w].lowlink);
                }
                Some(w_index) => {
                    if node![w].on_stack {
                        // Successor w is in stack S and hence in the current SCC
                        let v_lowlink = &mut node![v].lowlink;
                        *v_lowlink = min(*v_lowlink, w_index);
                    }
                }
            }
        }

        // If v is a root node, pop the stack and generate an SCC
        if let Some(v_index) = node![v].index {
            if node![v].lowlink == v_index {
                let mut cur_scc = Vec::new();
                loop {
                    let w = data.stack.pop().unwrap();
                    node![w].on_stack = false;
                    cur_scc.push(w);
                    if G::to_index(w) == G::to_index(v) { break; }
                }
                data.sccs.push(cur_scc);
            }
        }
    }

    let mut sccs = Vec::new();
    {
        let map = vec![NodeData { index: None, lowlink: !0, on_stack: false }; g.node_bound()];

        let mut data = Data {
            index: 0,
            nodes: map,
            stack: Vec::new(),
            sccs: &mut sccs,
        };

        for n in g.node_identifiers() {
            scc_visit(n, g, &mut data);
        }
    }
    sccs
}

/// [Graph] Condense every strongly connected component into a single node and return the result.
///
/// If `make_acyclic` is true, self-loops and multi edges are ignored, guaranteeing that
/// the output is acyclic.
pub fn condensation<N, E, Ty, Ix>(g: Graph<N, E, Ty, Ix>, make_acyclic: bool) -> Graph<Vec<N>, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    let sccs = scc(&g);
    let mut condensed: Graph<Vec<N>, E, Ty, Ix> = Graph::with_capacity(sccs.len(), g.edge_count());

    // Build a map from old indices to new ones.
    let mut node_map = vec![NodeIndex::end(); g.node_count()];
    for comp in sccs {
        let new_nix = condensed.add_node(Vec::new());
        for nix in comp {
            node_map[nix.index()] = new_nix;
        }
    }

    // Consume nodes and edges of the old graph and insert them into the new one.
    let (nodes, edges) = g.into_nodes_edges();
    for (nix, node) in nodes.into_iter().enumerate() {
        condensed[node_map[nix]].push(node.weight);
    }
    for edge in edges {
        let source = node_map[edge.source().index()];
        let target = node_map[edge.target().index()];
        if make_acyclic {
            if source != target {
                condensed.update_edge(source, target, edge.weight);
            }
        } else {
            condensed.add_edge(source, target, edge.weight);
        }
    }
    condensed
}

/// [Graph] Compute a *minimum spanning tree* of a graph.
///
/// Treat the input graph as undirected.
///
/// Using Kruskal's algorithm with runtime **O(|E| log |E|)**. We actually
/// return a minimum spanning forest, i.e. a minimum spanning tree for each connected
/// component of the graph.
///
/// The resulting graph has all the vertices of the input graph (with identical node indices),
/// and **|V| - c** edges, where **c** is the number of connected components in `g`.
pub fn min_spanning_tree<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>)
    -> Graph<N, E, Undirected, Ix>
    where N: Clone,
          E: Clone + PartialOrd,
          Ty: EdgeType,
          Ix: IndexType,
{
    if g.node_count() == 0 {
        return Graph::with_capacity(0, 0)
    }

    // Create a mst skeleton by copying all nodes
    let mut mst = Graph::with_capacity(g.node_count(), g.node_count() - 1);
    for node in g.raw_nodes() {
        mst.add_node(node.weight.clone());
    }

    // Initially each vertex is its own disjoint subgraph, track the connectedness
    // of the pre-MST with a union & find datastructure.
    let mut subgraphs = UnionFind::new(g.node_count());

    let mut sort_edges = BinaryHeap::with_capacity(g.edge_count());
    for edge in g.edge_references() {
        sort_edges.push(MinScored(edge.weight().clone(), (edge.source(), edge.target())));
    }

    // Kruskal's algorithm.
    // Algorithm is this:
    //
    // 1. Create a pre-MST with all the vertices and no edges.
    // 2. Repeat:
    //
    //  a. Remove the shortest edge from the original graph.
    //  b. If the edge connects two disjoint trees in the pre-MST,
    //     add the edge.
    while let Some(MinScored(score, (a, b))) = sort_edges.pop() {
        // check if the edge would connect two disjoint parts
        if subgraphs.union(a.index(), b.index()) {
            mst.add_edge(a, b, score);
        }
    }

    debug_assert!(mst.node_count() == g.node_count());
    debug_assert!(mst.edge_count() < g.node_count());
    mst
}